
Evolving Distributed
Heterogeneous Systems

Premkumar Devanbu &
Eric Wohlstadter,

Dept. of Computer Science,
University of California, Davis.
http://castle.cs.ucdavis.edu

A distributed system.

Middleware

Services
Clients

For example:
n Clients: patients:
n Services: doctors, pharmacists, and insurers.

Architectural model, separation of
concerns, type-safety, traceability etc.

Now add Security

Middleware

Services
Clients

Non-local policy, e.g., pick one doctor only for
“psychotropic” drugs.
Fine-grained policies: e.g., state-full, w/delegation,
data-dependent etc.

Authentication
Server

No model, code delocalization,
no traceability, no type-safety (?),

concern not separated

Now add another feature
(Fault-tolerance, Logging…etc)

Same problem as before, scattered
implementation.
but worse… features interact. Where is

the interaction?

What we hope for.

Separation of concerns:
n A coherent unit where each feature lives
n Ditto where interactions are handled.
Architectural Modeling and Code generation
n Architectural modeling of non-functional features
n Architectural modeling of feature interactions
n Traceability to implementation.

Embrace Heterogeneity
n Interoperability
n Opportunistic use of available language tools.
Type-safe & Conceptually well-founded
n To enable static analysis, optimization, etc.

Some Potential Solutions.

AOP.
Wrappers.
Monadic-style programming.
Reflective techniques.
Dynamic Techniques.

… all help, but not completely. We need
synthesis, not only in better tools, but also for
better methods.

If we solve this problem….

Non-functional features easier to
design, implement, and evolve.
Feature-interactions ditto.
Better-quality and better-performing
systems.

What we hope for.

Separation of concerns.
Controlled, separable, composition of

concerns.
Typesafety
Architectural modeling and traceability
Inter-operability (legacy, binary-only

etc).
Opportunistic use of existing tools.

Difficulties

Implementation de-localized (even
scattered), but must be co-ordinated.
Possibly different languages.
Maintenance:
n Tracking policy changes
n Or even just fixing bugs.

